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METEOROLOGICAL'CONDITIONS IN THE LOWER ATMOSPHERE 

ABSTRACT 

Whenever explosions are used in testing or in experimental 

procedures, the sound waves that go beyond the limits of the installation 

may cause complaints of annoyance or damage from otherwise good neighbors. 

This is due to focusing of the sound waves caused by the meteorological 

conditions at the time of the explosion. 

The theory of the propagation of sound through the atmosphere 

is given briefly. The conditions in the atmosphere which cause the 

sound to be focused are velocity gradients produced by variations with 

altitude of humidity, air temperature, and wind velocity. A simple 

method is described for evaluating these factors and forecasting the 

location of a focus, if one is to be expected, as well as the intensity 

of the sound at the focus. 

This technique has been employed successfully at Aberdeen Proving 

Ground for three years during which time the complaints have been greatly 

reduced. 
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BACKGROUND 

At every Department of Defense establishment where testing 

operations involve the explosion of H.E. charges outdoors, there are . 

frequent complaints of annoyance or claims for damage from persons 

living in contiguous areas- The complaints of annoyance are often 

justified; the damage claims are often unjustified. Both can be 

reduced or avoided entirely. 

The refraction of sound waves produced by the meteorological 

conditions between the earth's surface and the elevation of 10,000 to' 

12,000 feet may cause the sound waves produced by explosions at or above 

the surface of the ground to be focused near homes in the vicinity of 

the testing area. This phenomenon may be annoying; however, it is 

doubtful that any damage to walls or window glass will be caused by air 

blast at distances greater than a few miles from any but very large 

explosions (100 or more pounds of high explosive). 

The refraction of the sound waves is due to the presence of vertical 

gradients of the velocity of sound through the air (g-) where v is the 

velocity of sound and y is the altitude. Since the velocity of sound 

in air depends on temperature, humidity, and the wind, the vertical 

gradient will depend on variations of these factors with altitude. 

One of the earliest papers on the refraction of sound due to 

meteorological conditions was presented to the Royal Society of London 

about 1906 as a result of the firing of guns during the funeral of Queen 

Victoria. The easily recognized noise resulting from the rythmic firing 

of the guns was heard in London and also far to the north but the two 

areas were separated by a zone of silence. This experience was explained 

by refraction due to a wind, directed to the north, with a large wind 

gradient existing at high altitudes. Since that time, about sixty papers 

have been published on this subject. Everett P. Cox^  , in his treatment 

(1) % 'Numerals refer to references listed at end of the report. 
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of upper air temperatures as measured at the demolition of Helgoland, . 

has reviewed the salient facts and presented an excellent bibliography 

of the important contributions. •,      ; 
i 

In the present paper, nothing has been added to,the classical 

theory of propagation; however, an operation procedure is described 

that permits the meteorological conditions to be quickly evaluated and 

the cause of complaints from contiguous areas reduced to a minimum. 
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BASIC THEORY 

As stated previously, the velocity of sound in the atmosphere depends 

on temperature, humidity, and wind. Experience shows that the temperature 

of the lower atmosphere at Aberdeen Proving Ground may vary through a 

range of 20 to 30 C .between the surface and an altitude of 10,000 feet, 

causing a change in velocity of sound of kO to 60 feet per second. In 

this same region, the wind may vary from 0 to ^5 or 60 feet per second. 

Although the change in relative humidity can he as large as 50$, such a 

change can affect the velocity of sound by only about 1 foot per second. 

Since 1 foot per second is less than the error in our determination of 

wind velocities, the effect of changes in humidity can be neglected without 

noticeable error. 

When the problem of devising a simple but safe set of guidance rules 

for firing at Aberdeen Proving Ground was given to the Ballistic Research 

Laboratories, a study was made of the meteorological conditions prevailing 

in the vicinity of Aberdeen on those days when complaints had been 

registered. Of twenty-six cases, in all but one, there was a strong 

wind increasing In velocity at altitudes of about two or three thousand 

feet up to eight or ten thousand feet. The wind was in general from 

the point of detonation toward the point of complaint. This fact was 

taken as sufficient evidence that any guidance rules for the Aberdeen 

Proving Ground area should include consideration of wind effects in 

addition to the effect of temperature on the propagation of the sound 

waves. Thus velocity gradients are based on an algebraic sum of the 

temperature effect and the wind effect at each"altitude. The temperature 

effect is of course a scalar quantity and is the same in all directions, 

whereas the wind effect is a vector quantity and is a function of direc- 

tion. Before describing how the temperature and wind effects can be 

calculated, the nature of the paths of sound waves will be reviewed 

briefly. 

When an explosion occurs at the surface of the ground, a diverging 

shock front starts at the point of explosion and spreads in all direc- 

tions in the hemisphere above the surface of the ground. The shock 

waves degenerate to sound waves quite rapidly and it is sufficient for 



the purpose of this study to consider only the propagation of sound 

waves. 

The paths of the various parts of the wave front can be depicted 

by rays emanating in all directions from the center of the explosion. 

One of these rays will start from the source making an angle 0 with the 

horizontal. Then at the surface 

r  - g - tan 9 

where x and y are the horizontal and verticle coordinates. If G Is 

the angle between the ray and the horizontal at any altitude y: 

rl'-SX. 
dx 

tan .9 

and 
,2   d (tan 9 ) 

v» _ d y _     y y -TS dT"^ 
dx 

(1) 

(2) 

If the velocity of sound varies with altitude, the angle 9 will vary 

according to Shell's law such that, if V is the velocity at altitude 

y, then 

cos 9 
= a constant = C (5) 

or 

from (l) 

Cos 9 - CV 
y  y 

sin 9 
y, m X 

cos 9 (5) 

from (k)  and (5) . IA - «v* 
cv. 

y,  * (6) 

or (7) 
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and y" = 

y- = 

cs v 
dV 

y 
dy 

-1 dV 
y 

V 
y 

2 cos e 
y 

dy 

1        2        dv 

(8) 

(9) 

i r     51 dv 
(10) 

dV 
If -r-^ = a constant K (the vertical velocity gradient) and if V, - velocity 

at the ground surface, then 

and 

Vvi + 'Ky 
1 

- K (. ^ + y ) 

v"  1 
y   - 

K ( vi + y ) 
K           _ 

i + far1 )2 

vi + y 
_K             _ 

(11) 

(12) 

[i + (y')2] K 

(13) 

The solution of equation 13 (see references 1, 2,  and 3) represents the 

path of propagation with least time between two points:        ' 

/   „ \2  ,   "lv2  „ 2 (x + C2)  + (y + —) = C2 (U) 

in which C. and CL are constants of integration, and x and y are the 

cartesian coordinates of the points along the ray path. Equation Xk 

represents a circle the center of which is on a line below the ground 

surface a distance equal to V,/K. The parameter C, is the radius of 
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the circle and Cp is the horizontal distance from the origin of co- 

ordinates to the center of the circle. In Figure 1 are shown the paths 

of several rays starting at the source with different angles of departure. 

For a negative gradient the path of the sound ■wave would be the arc of a 
circle curving upward, the center of the circle "being on a line above the- 

ground surface at a distance equal to V,/K. 

Variations with altitude of either the rate of change in air tem- 

perature or the rate of change in wind velocity will change the value of 

the gradient K and therefore the curvature and direction of the cor- 

responding arc will change accordingly. At the boundary between layers 

having different values of K there will be a layer of transition in which 

the conditions gradually change from those of one layer to those of the 

other. In this transition layer the path of a ray gradually changes from 

the arc determined by the velocity gradient in the layer from which the 

ray is emerging to the arc determined by the gradient of the layer being 

entered. Figure 2 shows a typical graph of sound velocity versus alti- 

tude and Figure 3 shows the paths of the rays resulting from the gradients 

in Figure 2. As indicated above, the curvature of the paths in any layer 

depends on the gradient in the layer. 

For a ray to be refracted to the surface from any layer, the maximum 

velocity attained in that layer must equal or exceed the velocity at all 

points in the medium nearer the surface of the ground. 

If the ray path is confined to a medium in which only a single 

velocity gradient exists the horizontal distance traversed by a given 

ray (i.e. the range) can be most simply calculated by plane geometry. 

In Figure k a ray path is shown leaving the origin at an angle 9, rising 

in an arc to an altitude y and returning to the surface at a horizontal 

distance R from the origin. 

In the figure, 

tan9=^| 

or R m 2  (7±/K)  tan G 
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FIG. 3-RAY    PATHS    CORRESPONDING    TO    GRADIENTS 
REPRESENTED   IN   FIG. 2 
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8 = ANGLE   OF DEPARTURE 
R = HORIZONTAL   RANGE 
y = MAXIMUM ALTITUDE REACHED BY THE RAY. 

FIGURE   4.-RANGE  AND ALTITUDE FOR A GIVEN RAY IN 
A MEDIUM OF A SINGLE GRADIENT 
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where V, = Initial velocity and K is the velocity gradient. 

y 

t2     I 
(dx) + (dy)' 

and V = V„ + Ky 
y   1 

After integration: 

1/2 

t = § log cot (*-§)• 

For a medium having two gradients the path of a ray is pictured 

in Figure 5. The range of the ray departing at an angle 0 will be: 

R = 2X± + 2 X2 

X, = a c - b c 

Vl ac = jir- tan 6.. 

V 
be = ( ^- + y1 )    tan 92 

Since V2 - ^ = 1^ Y1 then yi = ^ - ^ • 

Vl V2 and X, - <jg-   tan 9, - =r- tan 92 

V2 
x2 - iq ta* 92 

2V2        2V  sin 9   2V2 sin 9 
and R = ~^-   tan 90 + -^=-    ~    - ^r—    ~ 

Kg Kl  cos ®1   *1  cos 62 
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0| s ANGLE BETWEEN RAY AND HORIZONTAL AT SURFACE. 
6Z  ~   ANGLE BETWEEN RAY AND HORIZONTAL AT TOP OF LAYER. 
ad' RANGE OF RAY= 2x, + 2x2i 
K,,K2  = GRADIENTS   IN   1st AND 2Qd   LAYER   RESPECTIVELY. 

FIGURE 5 - RANGE  OF RAY IN A MEDIUM OF TWO  LAYERS 
HAVING  VELOCITY  GRADIENTS   OF K, 8 K2 
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which, .reduces to 

2V. 2 V, 
E ■ ff   tan 62 + ^  cos 9X    (Sin ei " 8ln 92 )       <20> 

Hie travel time for the two layered medium is 

1 —■    (for 1st layer) + 2  /    ~ (for 2nd layer) 
v -s-v V o    y 

For 1st layer 

t±  = 2 J   ~ in which ds = (dx)2 + 
'o    y          <— 

x _ 0 { X ( sin 9 ) dy _ 0 / 

"yi 

— 

(dy)2 

- d€ 

y 

1/2 

'1 ~J0             V1+Ky     -yQ 

= - |- log tan ( J + ^ ) 

1 

e2 

91 

K- cos 9 

h t 
on 

= |- j log tan ( J + ^ ) - log tan ( £ + ^ )| 

«1 

For 2nd layer 

£ 2   'log cot ( J-^i ) -log cot ( 5-^) ¥ " 2~ »] 

t2 = 2 in which V = Vg + K^Y 

2  ,    * / «  92 > 
I" 2" 

The total travel time t = t + t^ 
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[" ö 9 
log cot < J - ^ ) - log cot ( 5 - y ) 

+ |-  log cot ( $ - ^ ) (21) 

The Symbols of equation (2l) are defined in the diagram of Figure 6. 

Figure 7 presents a plot of the travel time (t) versus angle of 

departure (9) and range (R) versus 9 for the case of transmission through 

an atmosphere in which two velocity gradients K, and IC exist, K. being 

less than KU.  It should be noted that at 9 = 9, the travel time curve 

and the range pass thru a minimum- Furthermore, both the travel time 

and range change very slowly with 0 in the vicinity of 9.. f    This indicates 

that for the conditions stated for Figure 7> a cone of rays will be 

converged at a range of R.. with very slight differences in phase which 

will produce an increase in intensity. The various combinations of 

gradients that will produce this focussing is of vital interest and can 

best he shown by calculating ray paths for various combinations of 

gradients that can be expected to occur. An analogue computer has been 

used to calculate and trace ray paths for single gradients and for 

combinations of two to seven gradients. The solutions show paths for a 

group of rays starting at different angles of departure. • If focussing 

occurs the convergence will be shown as well as the distance to the 

point of focus. 

The Piedmont Division of Sperry-Rand Corporation, Charlottesville, 

Virginia,.designed the analogue computer used. With it the effect of 

from one to twenty gradients can be considered. The computer is small 

in volume (about two cubic feet) and provides, the solution in a few 

minutes. In order to simplify the construction of the computer some 

simplifying assumptions were made in the solution of the equation of the 

ray path. The approximations and the resulting errors are insignificant. 

This is demonstrated in Appendix A. 

20 



PATH    OF   RAY   THROUGH   TWO 
LAYER   ATMOSPHERE 

K2 5   -— IN   2nd   LAYER 2     dy 
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_ \/,B ,-LtNE  OF CENTERS FOR 2nd   LAYER 

LINE   OF CENTERS FOR   1st   LAYER 

FIG  6-DIAGRAM   DEFINING   TERMS   IN  EQUATION   21 
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BLAST WAVE INTENSITY 

The overpressure In a blast wave when propagated through an 

atmosphere in which the velocity gradient Is zero has been determined , 

for various distances for several different weights of explosive. At 

a given distance the overpressure in the blast wave will be different • 

if the explosive is detonated at the surface of the ground or In free 

air. The measured value will also be different if the pressure gage is 

at the surface of the ground or in free air.  In Figure 8 graphs are 

shown which give the overpressure versus distance for several weights of 

explosive detonated at the surface and the overpressure measured at the 

surface for a uniform atmosphere. 

When the ray paths of sound are affected by gradients in the 

atmosphere the intensity at a given distance will be Borne multiple of 

the. overpressure given in Figure 8 for the given distance. The com- 

binations of gradients to be experienced can be classed as one of five 

basic types or categories. The types are shown In Figure 9* For each 

type approximate values have been determined for a "multiplication 

factor" to calculate the intensity at a focus due to that type of 

gradient combination. 

The value of intensity at a focus compared to the intensity at 

the same distance in a uniform atmosphere has been derived from the 

experience of several years. A few direct and many indirect deter- 

minations have been made. By noting the distance to a particular type 

of damage and assuming the minimum overpressure known to produce such 

damage, a maximum "multiplication factor" can be calculated. Such 

indirect methods have provided conservative but very useful values for 

calculating overpressures to be expected. The calculation of the 

Intensity to be expected at the focus is made as follows: 

The distance from the explosion to the focus is noted in the 

solution on the computer, and the intensity of the blast wave at that 

distance in a uniform atmosphere is read from Figure 8. The category 

of the gradient combinations in the atmosphere is determined by compar- 

ison of the velocity versus altitude curve with Figure 9 and the 
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CATEGORY                            DESCRIPTION 

\ 

MULTIPLICATION 
FACTOR 

1            SINGLE   NEGATIVE   GRADIENT 

5 

< 
\ 

0 

* VELOCITY 

Z SINGLE    POSITIVE   GRADIENT 

ZERO   GRADIENT   NEAR  SURFACE 
WITH   POSITIVE GRADIENT ABOVE 10 

WEAK   POSITIVE   GRADIENT   NEAR 
SURFACE   WITH   STRONG   POSITfVE 
GRADIENT   ABOVE 

25 

NEGATIVE   GRADIENT NEAR  SURFACE 
WITH    STRONG    POSITIVE 
GRADIENT   ABOVE 

100 

FIG. 9-VARIOUS   TYPES   OF  VELOCITY   GRADIENTS   TO 
BE   EXPECTED   AND   THE  INCREASE   IN  INTENSITY 
AT A  FOCUS    FOR   EACH   TYPE. 
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"multiplication factor" is observed. The intensity read from Figure .8 

multiplied by the "multiplication factor" will be the intensity at the 

focus to be expected. 

DAMAGE CAUSED BY BIAST WAVES 

The damage caused by the overpressure of a blast wave depends to 

a very large extent on the type of construction. Glass panes of average 

size and thickness vary greatly in their ability to withstand blasts 

depending on how the panes are mounted. If the pane is forced into the 

frame so as to be under a constant strain, a blast wave of 0.1 psi 

overpressure can cause the pane to crack but if it is mounted without 

any strain in the glass an overpressure of about 0.75 psi may be 

required to crack it. 

The cracking of plaster on a wall depends on the flexibility of 

the wall. A plastered surface attached to a masonry wall will withstand 

a much higher pressure than a surface supported by a wide wooden panel. 

In general a well constructed plastered wall will stand higher over- 

pressures than average window panes. 

An overpressure of .03 to .05 psi in a blast wave can cause a 

loose window sash to slap the window frame and produce a loud noise 

while actually no damage is being done. In contrast to this, the quiet 

settling of.one corner of a house can cause damage to walls and windows 

which is often attributed to blast waves. 

GATHERING METEOROLOGICAL DATA • -, 

The meteorological data are gathered by release of a weather 

balloon and radiosonde. ' A GMD 1 A Rawln set is used at Aberdeen Proving 

Ground. The wind data are calculated from the successive positions of 

the balloon which is determined at frequent intervals. The air tem- 

perature is telemetered back by the radiosonde. From the ground surface 

to 5000 feet altitude, the temperature and wind velocity and direction 

should be determined for 500 feet intervals. From 5000 feet to about 

12000 feet the data should be determined every 1000 feet. The data 

are recorded as in the sample data sheet (Figure 10). The air tem- 

perature is recorded in degrees centigrade. A change in temperature 

26 



METEOROLOGICAL   DATA 

A PC RELEASE TIME _[243_HRS^_    DATF      13 NOV. 1959 

AZIMUTH OF INTEREST 2061 

1 2 3 4 5 6          7 8 9 
-   7—■ 

10 

AIR 

TEMP. 

ALTITUDE 

ABOVE 

WIND 

DIRECTION 

ANGLE 

WITH 

cosr WIND VELOCITY COMP 

OF 

AV 

DUE TO 

TOTAL 

CHANGE Mt/HR FT/SEC 

•c SURFACE FROM AZIMUTH WIND TEMP VELOCITY 

(FEET) TRUE NORTH 

(DE6REES) (DEGREES) 

FT/SEC FT/SEC FT/SEC 

15.1 0 030 86 .07 5 7.3 -1 30 29 
12.0 720 102 14 .97 7 1.1 -10 24 14 
11.5 1200 162 44 .72 II 16 11 23 34 
II 0 1790 193 13 .97 1* 21 20 22 42 
9 5 2320 201 5 .99 14 21 20 19 39 
9.5 2910 194 12 .98 17 25 24 19 43 
8.2 3440 201 4 .99 19 28 28 16 44 

6.9 4520 216    - 10 .98 22 32 32 14 46 
5.2 5600 216 10 .98 23 34 33 10 43 
3.0 6680 210 4 .99 25 37 36 6 42 
1.3 7620 208 2 .99 24 35 35 3 38 
0.9 6650 220 14 .97 22 32 31 2 33 
0.2 9700 231 25 .90 27 40 36 0 36 

-1.4 10750 235 29 .8 7 30 44 39 -3 36 

NOTE'- 

IN COLUMN 3-RECORD  DIRECTION TO WHICH WIND  IS BLOWING 

IN COLUMN 4-ANGLE BETWEEN WIND DIRECTION AND AZIMUTH OF INTEREST 

IN COLUMN 6-(WIND VELOCITY AT EACH ALTITUDE) X (COS Y AT SAME ALTITUDE) 

IN COLUMN 9-(VALUE IN COLUMN I AT EACH ALTITUDE) X 2 

COLUMN 10 IS THE SUN OF COLUMNS   8 AND 9 

FIGURE 10-SAMPLE DATA SHEET 
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of the air of 1°C changes the velocity of sound almost exactly 2 feet/ 

second, so the difference between the velocity of sound at a given 

temperature and the velocity at 0 C is determined by multiplying the i 

temperature by 2. Since the effect of wind varies with direction, the, 

component of the wind in the direction of interest must be calculated 

for each elevation. 

At each elevation, the sum of the component of the wind in the 

direction of interest (column 8 in Figure .10) and the change in velocity 

due to the temperature (column 9) will give the difference between the 

velocity at that elevation and the velocity at zero degrees centigrade. 

If the values of this resultant (column 10) are plotted on linear co- 

ordinates as in Figure 11, the variation in velocity is depicted and 

the magnitude of the gradients can be measured. Figure 11, Is the 

presentation of the data upon which the forecast of a focus and its 

location Is based. If the wind varies widely in direction with altitude, 

it may be necessary to reduce the data for two or more directions, each 

case being treated separately as described above. 

FORECASTING THE FOCUS 

If the velocity data shown in Figure 11 are furnished to the 

Sperry-Rand analogue computer, a presentation of the resulting ray paths 

will be shown on the screen. Ray paths corresponding to the conditions 

depicted in Figure 11 are shown in Figure 12. If a focus occurs, it 

will be seen on the screen where the rays converge and the distance from 

the source will be shown. 

Actually at APG, it has been found that the pattern of gradients 

often repeat so that a library of 32 "typical gradients" and the resulting 

ray paths have been accumulated. Generally the gradients recorded daily 

can be matched sufficiently close with one of the "typical gradients" 

to be used for a forecast. The computer should be kept at hand for more 

precise determination, when needed, and for those cases for which there 

is no matching typical gradient. The typical gradients are included 

In Appendix B. 
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COMMENTS AMD RECOMMENDATIONS 

When a government establishment is put in an isolated area, the 

regions just beyond the exits may soon be occupied by non-government 

employees desiring to supply goods or services and the area may become 

a site for housing developments. 

If possible, a test center involving the use of explosives should 

be so located that the prevailing upper winds will blow from the source 

of blast waves toward a wide stretch of Government owned lands or to ■ 

the open sea. 

The entrances to the establishment should be so located that the 

prevailing upper winds will blow from them toward the point of detonation. 

The direction of the winds are determined by the position of the 

high and low pressure areas in the atmosphere and with a little experience 

in this procedure a study of the daily weather maps will permit a 

meteorologist to forecast good shooting periods several days in advance. 

Since the conditions in the atmosphere usually drift toward the east, 

the preceding statement will be of no help to stations along the 

Pacific Coast because no detailed data for the area Immediately west of 

the coast is given on the weather maps. 

The most desirable time for detonating an explosive is when the 

center of a high pressure area is at the point of detonation. The 

.temperature of the air around the test site will then be found to decrease 

with altitude and the wind will be at a minimum. Under such conditions., 

the blast waves are refracted upward and the detonation of a large 

charge (1000 pounds of TNT) would be barely audible at a distance of one 

or two miles. 

Generally the weather conditions change slowly, since the areas of 

high and low atmospheric pressures are large and on the average move only 

300 miles per day. Therefore the conditions indicated by the meteor- 

ological data can be expected to remain sufficiently constant for about 

8 hours. The firing should be started as soon as possible after the 

meteorological data are taken. If the firing is to extend from daylight 
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conditions into the night, it is advisable to make a "metro" run in 

the late afternoon to detect any changes that are occurring. If the 

weather map shows a "weather front" to be approaching caution in the 

firing is advisable. Firing should be discontinued during the passing 

of the "front" and a metro run should be made after the passage of the 

"front" to determine if firing can be resumed. 

It should be noted that the worst focusing conditions can cause 

the pressures indicated in Figure 8 to be multiplied by 100. If the., 

weight of the explosive being detonated is so small that the pressure 

at the nearest point of possible damage could not exceed 0.1 psi even 

under the worst conditions, then firing can proceed without a metro 

run. This procedure will sometimes cause complaints of annoyance but 

should not result in damage. 

RECAPITULATION 

The following summary of the Standard Operating Procedure will 

serve as a convenient guide: 

1. The meteorological balloon should be released 2 or 3 hours 

before the firing program is scheduled to begin. 

2. The wind and temperature data should be reduced and tabulated 

as in Figure 10. Data should be recorded at Intervals of 500 feet from 

the surface to 5000 feet altitude and at intervals of 1000 feet from 

5000 feet, to 12000 feet altitude. 

J. The velocity versus altitude should be plotted for each azimuth 

of interest as in Figure 9 and the velocity gradients should be noted. 

k.    The combination of gradients for each azimuth should be compared 

to the set of 52 in Appendix B and the location of the focus (if one 

is indicated) should be noted. 

(if no sample velocity versus altitude curve in Appendix B can be 

found to match the one just plotted then the analogue computer must be 

used.) 

. 5, With the weight of explosives to be detonated and the distance 

to the focus known, the pressure to be expected in a uniform atmosphere 
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can be read from the chart on Figure 8 of the text. 

6. By comparing the velocity versus altitude curve to the five 

basic types shown in Figure $,  the multiplication factor for the 

prevailing conditions can be determined. 

7. If the pressure read from Figure 8, multiplied by the 

multiplication factor determined from Figure 9,  is 0.1 psi or greater, 

firing should be postponed. 

PAUL H. LORRAIN 

WILLIAM H. TOWNSEND 
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APPENDIX A 

APPROXIMATIONS IN ANALOGUE 

SOLUTION OF RAY PATHS 
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The following was furnished by Mr. DeBow Owen of Piedmont Division> 

Sperry-Rand Corporation, Charlottsvllle, Virginia. 

Since the Ray Tracer computing system integrates in the time domain, 

y must be expressed as a function of time; 

Q = *y *£ = v y=,3ir=,3s-Tr = V Sin 0 J  dt  ds dt   y    y (1) 

in which 9 = angle between the ray and the horizontal and V is the . 

velocity of sound, at altitude Y. 

ay 

dt y - 5T (V„ Sin Oj 

* S <CoB % -  Sin 0y) ^ 

. d9 

"ü <Cos2er> at1 (2) 

dQ       dV 
Since Cos Qy . CVy, ^ = -CVy ^ 

and substituting in (2) 

dV 
•y = -Vy (Cos 29y) ^L (3) 

In the Ray Tracer the assumption is made that the horizontal distance 

traveled is equal to a constant average velocity times the travel time, 

i.e., x = Vavt, V  = constant 
av 
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then y = & ä| = V   tan 9 (1») 17  dx dt   av     y \ 

av 

Wow 

and 

p     de 

Sec 0  ^ y dt 

0 = Cos" 
y 

(C)        (Vy) 

<* 0         p y    c dV 
y 

dt    Sin 0  dt 
y 

(5) 

-C     y dy dx 
Sin 0  dy  dx dt 

y  \ 

dV 

-C V   dV : ay   y 
Cos 0   dy 

y 

-c V2     o    dV 

y 
and y--p ^ Sec" 0  ,-Z. (6) *  Cos 0        y  dy N ' 

and again since  ?.—, ^ = IT- Cos 0y   Vy 

-V2      dV 

V Cos 0  ^ 
y   y 

The gradients commonly experienced in the lower atmosphere are 

small (0 to .01*0 ft/sec/ft.) and persist for only a few thousand feet. 

For this reason, the rays that return to the surface will traverse a 

path, the direction of which will have a maximum inclination to the 

horizontal less than 12 degrees.. Therefore a further approximation has 
2 

"been made that Cos 0=1.. 
<J 

-V2   dV 
Then y = -^H ^ (8) 
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Equation (8) is used In the ray tracer in lieu of the more precise 

equation (21) of the text. A comparison of the exact solution of these 

two equations will provide an estimate of the error caused by the ap- 

proximations. When the initial slope of the ray is eleven degrees, the 

difference between the true and the approximate maximum height reached 

by the ray is 1.6 per cent. The difference in the true range and the 

approximate range is 1.2 per cent. These differences are insignificant. 
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APPENDIX B 

TYPICAL VERTICAL VELOCITY GRADIENTS 
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In the following pages, there is presented a set of gradients which 

are typical .of conditions found at Aberdeen Proving Ground over a two 

year period. The velocity at each altitude was determined from the 

temperature and wind velocity. 

With each velocity versus altitude curve the resulting sound ray 

paths, as computed on the Sperry-Rand Electronic Ray Plotter, are 

shown. 
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